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Regioselective Synthesis of Alkyl Aryl Ethers of

2,6-Dimethoxyhydroquinone
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Regioselective routes to 1-0-alkyl and 4-O-aryl ethers of 2,6-dimethoxyhydroquinone are described, as outlined in

Schemes 1-5.

In previous work' we have revealed a new radical spiro-
cyclisation reaction in which the thiohydroxamate ester 1 is
decarboxylated photochemically to yield the bicyclospiro-
dienone 2. This reaction was devised as a mimic for certain
unusual biotransformations that are apparent in lignan bio-
synthesis. Evidence has been presented that the mechanism
involves an intermediate cyclohexadienyl radical in which an
oxygen atom is transferred intramolecularly from an o-nitro
group to a carbon radical centre before loss of an aryl
moiety.
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To investigate the mechanism and scope of this reaction
we required a range on variants on structure 1. It was
necessary to work out new routes to alkyl aryl ethers 5 of
2,6-dimethoxyhydroquinone, with the flexibility to introduce
either the alkyl ether or the aryl ether first, i.e. 3—>4a —5
or 3—4b— 5. This apparently straightforward project
raised more problems than expected and in the search for
satisfactory methodology a number of alternative routes
were explored. These are reported in this paper.
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In our initial investigation we chose to use syringaldehyde
6 as the starting point; alkylation with, e.g., methyl
4-bromobutanoate was sluggish but afforded the desired
1-O-alkyl ethers 7 in good yield. Baeyer—Villiger oxidation
to the phenolic formates 8 was then employed to introduce
the 4-oxygen function.'* However, although an initial exper-
iment using m-chloroperbenzoic acid was successful, sub-
sequently the reaction proved capricious. In consequence we

*To receive any correspondence.
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Scheme1 Reagents: i, (a) BuLi, THF, (b) B(OPr')3, (c) MeOH,
Hzo; ii, ag. NaOH, H202

chose to investigate two different strategies, one based on
the oxygenation of a dimethylresorcinol or a dimethylpyro-
gallol derivative, and the other centred around the differen-
tial protection of 2,6-dimethoxyhydroquinone.
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The first route is shown in Scheme 1. The triisopropylsilyl
ether 9 of 3,5-dimethoxyresorcinol was readily formed and
after some experimentation it was found that it could be
deprotonated with n-butyllithium in tetrahydrofuran at
room temperature. The aryllithium was quenched with tri-
isopropylborate to form, after aqueous work-up, the aryl
boronic acid 10. The reaction was completely regioselective,
and the site of deprotonation was demonstrated by the
symmetry observed in 'H and '>*C NMR spectra. The
boronic acid was converted into the 4-O-monotriisopropyl-
silyl ether 11 of 2,6-dimethoxyhydroquinone as desired.
Alkylation of this product with methyl 4-bromobutanoate
proceeded smoothly as we have described previously.'® This
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Scheme 2 Reagents and conditions: i, Pr3SiCl, DMF, imidazole;
ii, Bu"Li, THF, B(OPr'); iii, ag. NaOH, H,0; iv, NaH, DMF,
2,4-dinitrofluorobenzene; v, TBAF, THF, 0°C
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Scheme 3 Reagents and conditions: i, aq. ammonia, MeOH;
ii, Pr'3SiCl, DMF, imidazole; iii, MeOH, Amberlite IRA-420(0OH);
iv, methyl 4-bromobutanoate, butanone, K,COg3, reflux, 72 h;

v, TBAF, THF, 0°C

proved a satisfactory route when it was desirable to form
the alkyl ether at o-1 before the aryl ether at O-4.

The reverse order of formation of the alkyl and aryl ether
links could be effected using the chemistry of Scheme 2. In
this case 4-bromo-2,6-dimethoxyphenol (12) was prepared
following a literature procedure for bromination of 2,6-
dimethoxyphenol.> The site of bromination was apparent
from the NMR spectra. Formation of the triisopropylsilyl
ether 13 was followed by lithiation with n-butyllithium and
reaction with triisopropylborate gave the aryl borate 14;
this last was oxidised in situ to afford the 1-O-mono-
triisopropylsilyl ether 15 of 2,6-dimethoxyhydroquinone,
isomeric with ether 11. This phenol readily reacted with
Sanger’s reagent to yield the 2,4-dinitrophenyl ether 16, and
the latter was deprotected to provide the aryl ether 17,
ready for addition of o-alkyl groups as required. These reac-
tions proceeded in fair to good yield as shown in the
Scheme.

The alternative strategy to lithiation/oxidation is shown
in Scheme 3. 1,4-Diacetoxy-2,6-dimethoxybenzene (18) was
prepared by reductive acetylation of 2,6-dimethoxyquinone.
It was found that regioselective deacetylation could be
achieved by treating the diacetate with conc. aq. ammonia
in methanol at room temperature, to provide the mono-
acetate 19 in 88% yield. That the product was 19 rather
than the isomer 20 was proven via synthetic connection to a
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Scheme 4 Reagents: i, NaH, DMF, 2,4-dinitrofluorobenzene;
ii, dil. HCI, acetone
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Scheme 5 Reagents and conditions: i, ethyl vinyl ether, PTSA;
ii, ag. MeOH, K,COg3; iii, (a) NaH, THF, (b) methyl
4-bromobutanoate, MeCN, K|, 18-crown-6, reflux 36 h;

iv, dil. HCI, MeOH

compound prepared unambiguously in our earlier work.'
Thus the free phenol 19 was protected as its triisopropylsilyl
ether 21, and deacetylated in base to afford 11 (before a
sample of 11 was available from the chemistry of Scheme 1).
Alkylation with methyl 4-bromobutanoate and desilylation
afforded the ester 23, identified by spectroscopic com-
parison with an authentic sample. This pathway enables
O-alkylation to precede O-arylation; the alternative sequence
can be realised as in Scheme 4. Thus reaction of the mono-
acetate 19 with Sanger’s reagent afforded the aryl ether 24,
which could be deacetylated to form phenol 17, indistin-
guishable from material from Scheme 2.

The chemistry of Scheme 3 was developed further for
projected scaled-up experiments, in an effort to avoid the
costs involved in silyl protection and deprotection steps.
Therefore, Scheme 5, the monoacetate 19 was treated with
ethyl vinyl ether and catalytic toluene-p-sulfonic acid to
yield the 2-ethoxyethoxy ether 25 in excellent yield.
Deacetylation liberated the free phenol 26, which was alkyl-
ated with methyl 4-bromobutanoate as above to yield 27.
Again the reaction was slow and the yield (32%) relatively
low. Deacetylation led back to the target 23 of Scheme 3 in
improved overall yield from 19.

The utilisation of the compounds described in this paper
to the synthesis of substrates for studies of radical decarb-
oxylation is detailed in ref. 1(d).
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